If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4q^2-64=0
a = 4; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·4·(-64)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32}{2*4}=\frac{-32}{8} =-4 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32}{2*4}=\frac{32}{8} =4 $
| 7h=–19+6h | | 3u-39=u+1 | | 11w=-16=7w | | 3x-14x=-55 | | 8x=20=2x+34 | | 3x+12=2x-18 | | 1.2l+7=13.24 | | 11t-28=7t | | 34=5(x+9) | | –16g+–2g+5=–13 | | k−51=49 | | 8v=17+9v | | 3(7x-2=-27 | | (5x+2)^2-8=42 | | 2x+3.1=1.7 | | 7x+5(x-1)=7+8x | | 2x+16+3x-12=180 | | 10=t9 | | 13x+32-9x=-16-4x | | 27=7+-5x | | X^2-48x+480=0 | | -5x+7=²⁷ | | 16x-72+4x=180 | | 4^3x+1=16^x | | y+42=8y | | 41/3m=53/7 | | -336-21y-8y=13 | | 9(10-4x)=-270 | | x+12=2x+17 | | z+14=8z | | a=12+43 | | 3x+3-9x=17-6x |